

Silent Check Valve Engineering Data

Notes: I. Pressure drop curves are based on water flow.

- 2. Valve cracking pressure is equal to or less then 0.5 psid.
- 3. Valve cracking pressure increases to between 0.75 and 1.25 psid when installed vertically with flow upwards.

Gas Flow

Method of Calculating Flow

Liquid Flow

$$C_{V} = Q \sqrt{\frac{G}{\Delta P}} \qquad Q = C_{V} \sqrt{\frac{\Delta P}{G}} \qquad \Delta P = G \left(\frac{Q}{C_{V}}\right)^{2}$$

Saturated Vapour

$$C_{v} = \frac{W}{K} \sqrt{\frac{I}{\Delta P (P_{1} + P_{2})}} \qquad \qquad W = C_{v}K \sqrt{\Delta P (P_{1} + P_{2})}$$

Variables

Cv	=	Valve Coefficient			
ΔP	=	(P ₁ - P ₂) Pressure Drop			
PI	=	Inlet Pressure (PSIA)			
P ₂	=	Outlet Pressure (PSIA)			
G	=	Specific Gravity			
Water	=	I.0 at 60°F and I ATM			
Air	=	1.0 at 60°F and 1 ATM			

~		1.57	

$$C_{v} = \frac{W(1+0.0007T_{SH})}{K} \sqrt{\frac{1}{\Delta P (P_{1} + P_{2})}} \qquad C_{v} = \frac{C_{v}K}{(1+0.0007T_{SH})} \sqrt{\Delta P (P_{1} + P_{2})}$$

 $C_{V} = \frac{Q}{963} \sqrt{\frac{GT}{\Delta P \left(P_{1} + P_{2}\right)}} \qquad \qquad Q = 963C_{V} \sqrt{\frac{\Delta P \left(P_{1} + P_{2}\right)}{GT}}$